RESTRAINED ROMAN REINFORCEMENT NUMBER IN GRAPHS
نویسندگان
چکیده
A restrained Roman dominating function (RRD-function) on a graph \(G=(V,E)\) is \(f\) from \(V\) into \(\{0,1,2\}\) satisfying: (i) every vertex \(u\) with \(f(u)=0\) adjacent to \(v\) \(f(v)=2\); (ii) the subgraph induced by vertices assigned 0 under has no isolated vertices. The weight of an RRD-function sum its value over whole set vertices, and domination number minimum \(G.\) In this paper, we begin study reinforcement \(r_{rR}(G)\) \(G\) defined as cardinality smallest edges that must add decrease number. We first show decision problem associated NP-hard. Then several properties well some sharp bounds are presented. particular it established \(r_{rR}(T)=1\) for tree \(T\) order at least three.
منابع مشابه
restrained roman domination in graphs
a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملOn the restrained Roman domination in graphs
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملOn the Roman reinforcement in graphs
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ural mathematical journal
سال: 2022
ISSN: ['2414-3952']
DOI: https://doi.org/10.15826/umj.2022.2.007